skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koutnik, Michelle R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A major subglacial lake, Lake Snow Eagle (LSE), was identified in East Antarctica by airborne geophysical surveys. LSE, contained within a subglacial canyon, likely hosts a valuable sediment record of the geological and glaciological changes of interior East Antarctica. Understanding past lake activity is crucial for interpreting this record. Here, we present the englacial radiostratigraphy in the LSE area mapped by airborne ice-penetrating radar, which reveals a localized high-amplitude variation in ice unit thickness that is estimated to be ∼12 ka old. Using an ice-flow model that simulates englacial stratigraphy, we investigate the origin of this feature and its relationship to changes in ice dynamical boundary conditions. Our results reveal that local snowfall redistribution initiated around the early Holocene is likely the primary cause, resulting from a short-wavelength (∼10 km) high-amplitude (∼20 m) ice surface slope variation caused by basal lubrication over a large subglacial lake. This finding indicates an increase in LSE water volume during the Holocene, illustrating the sensitivity in volume of a major topographically constrained subglacial lake across a single glacial cycle. This study demonstrates how englacial stratigraphy can provide valuable insight into subglacial hydrological changes before modern satellite observations, both for LSE and potentially at other locations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Converting measurements of ice-sheet surface elevation change to mass change requires measurements of accumulation and knowledge of the evolution of the density profile in the firn. Most firn-densification models are tuned using measured depth–density profiles, a method which is based on an assumption that the density profile in the firn is invariant through time. Here we present continuous measurements of firn-compaction rates in 12 boreholes near the South Pole over a 2 year period. To our knowledge, these are the first continuous measurements of firn compaction on the Antarctic plateau. We use the data to derive a new firn-densification algorithm framed as a constitutive relationship. We also compare our measurements to compaction rates predicted by several existing firn-densification models. Results indicate that an activation energy of 60 kJ mol−1, a value within the range used by current models, best predicts the seasonal cycle in compaction rates on the Antarctic plateau. Our results suggest models can predict firn-compaction rates with at best 7% uncertainty and cumulative firn compaction on a 2 year timescale with at best 8% uncertainty. 
    more » « less
  3. Abstract. Radio-echo sounding (RES) has revealed an internal architecture within Antarctica’s ice sheets that records their depositional, deformational and melting histories. Crucially, spatially-widespread RES-imaged internal-reflecting horizons, tied to ice-core age-depth profiles, can be treated as isochrones that record the age-depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice-dynamical processes on large scales, which are complementary to but more spatially-extensive than commonly used proxy records across Antarctica. We review progress towards building a pan-Antarctic age-depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last six decades (focussing specifically on those that detected internal-reflecting horizons), and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores, or modelling) the RES-imaged isochrones. We summarise the scientific applications to which Antarctica’s internal architecture has been applied to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) Identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) Reconstruction of surface mass balance on millennial or historical timescales; (3) Estimates of basal melting and geothermal heat flux from radiostratigraphy and comprehensively mapping basal-ice units, to complement inferences from other geophysical and geological methods; (4) Advancing knowledge of volcanic activity and fallout across Antarctica; (5) The refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour, and then to reduce uncertainties in projecting future ice-sheet behaviour. 
    more » « less